Spatial Distribution Patterns of Root-Associated Bacterial Communities Mediated by Root Exudates in Different Aged Ratooning Tea Monoculture Systems
نویسندگان
چکیده
Positive plant-soil feedback depends on beneficial interactions between roots and microbes for nutrient acquisition; growth promotion; and disease suppression. Recent pyrosequencing approaches have provided insight into the rhizosphere bacterial communities in various cropping systems. However; there is a scarcity of information about the influence of root exudates on the composition of root-associated bacterial communities in ratooning tea monocropping systems of different ages. In Southeastern China; tea cropping systems provide the unique natural experimental environment to compare the distribution of bacterial communities in different rhizo-compartments. High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) was performed to identify and quantify the allelochemicals in root exudates. A high-throughput sequence was used to determine the structural dynamics of the root-associated bacterial communities. Although soil physiochemical properties showed no significant differences in nutrients; long-term tea cultivation resulted in the accumulation of catechin-containing compounds in the rhizosphere and a lowering of pH. Moreover; distinct distribution patterns of bacterial taxa were observed in all three rhizo-compartments of two-year and 30-year monoculture tea; mediated strongly by soil pH and catechin-containing compounds. These results will help to explore the reasons why soil quality and fertility are disturbed in continuous ratooning tea monocropping systems; and to clarify the associated problems.
منابع مشابه
Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture
Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It sugges...
متن کاملSpatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L.
Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to sh...
متن کاملInhibition of Tea Root Lesion Nematode, Pratylenchus Loosi, by rhizospher bacteria
Root-lesion disease, which is caused by Pratylenchus loosi , is one of the most important diseases currently impacting Iran tea plantations. This disease causes great economic crop impacts. Northern provinces, which supply much of Iran’s tea production, have been especially hard impact by root-lesion disease.The purpose of this study was to biological control the nematodes as one of the main se...
متن کاملRoot biomass and exudates link plant diversity with soil bacterial and fungal biomass
Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and ...
متن کاملInteraction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system
In this study, quantitative real-time PCR (qPCR) was used to determine the amount of Fusarium oxysporum, an important replant disease pathogen in Pseudostellaria heterophylla rhizospheric soil. Moreover, HPLC was used to identify phenolic acids in root exudates then it was further to explore the effects of the phenolic acid allelochemicals on the growth of F. oxysporum f.sp. heterophylla. The a...
متن کامل